Almost Euclidean Quotient Spaces of Subspaces of a Finite-Dimensional Normed Space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Euclidean Quotient Spaces of Subspaces of a Finite-dimensional Normed Space

The main result of this article is Theorem 1 which states that a quotient space Y, dim Y = k, of a subspace of any finite dimensional normed space X, dim X — n, may be chosen to be J-isomorphic to a euclidean space even for k = [Xn] for any fixed X < 1 (and d depending on X only). The following theorem is proved. 1. Theorem. For every d > 1 there exists X(d) > 0 such that every n-dimensional no...

متن کامل

On the Dimension of Almost Hilbertian Subspaces of Quotient Spaces

The question of the dimension of almost Hilbertian subspaces is resolved in [1] where it is shown that every Banach space E of dimension n possesses almost Hilbertian subspaces of dimension c(logn), where c is an absolute constant, and that this estimate is the best possible. When the net is spread wider to include quotient spaces and subspaces of quotient spaces we should expect to find instan...

متن کامل

Quotients of Finite-dimensional Quasi-normed Spaces

We study the existence of cubic quotients of finite-dimensional quasi-normed spaces, that is, quotients well isomorphic to `∞ for some k. We give two results of this nature. The first guarantees a proportional dimensional cubic quotient when the envelope is cubic; the second gives an estimate for the size of a cubic quotient in terms of a measure of nonconvexity of the quasi-norm.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1985

ISSN: 0002-9939

DOI: 10.2307/2045232