Almost Euclidean Quotient Spaces of Subspaces of a Finite-Dimensional Normed Space
نویسندگان
چکیده
منابع مشابه
Almost Euclidean Quotient Spaces of Subspaces of a Finite-dimensional Normed Space
The main result of this article is Theorem 1 which states that a quotient space Y, dim Y = k, of a subspace of any finite dimensional normed space X, dim X — n, may be chosen to be J-isomorphic to a euclidean space even for k = [Xn] for any fixed X < 1 (and d depending on X only). The following theorem is proved. 1. Theorem. For every d > 1 there exists X(d) > 0 such that every n-dimensional no...
متن کاملOn the Dimension of Almost Hilbertian Subspaces of Quotient Spaces
The question of the dimension of almost Hilbertian subspaces is resolved in [1] where it is shown that every Banach space E of dimension n possesses almost Hilbertian subspaces of dimension c(logn), where c is an absolute constant, and that this estimate is the best possible. When the net is spread wider to include quotient spaces and subspaces of quotient spaces we should expect to find instan...
متن کاملQuotients of Finite-dimensional Quasi-normed Spaces
We study the existence of cubic quotients of finite-dimensional quasi-normed spaces, that is, quotients well isomorphic to `∞ for some k. We give two results of this nature. The first guarantees a proportional dimensional cubic quotient when the envelope is cubic; the second gives an estimate for the size of a cubic quotient in terms of a measure of nonconvexity of the quasi-norm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1985
ISSN: 0002-9939
DOI: 10.2307/2045232